The TIME-WAIT state in TCP and Its Effect on Busy Sesers

Theodore Faber
Joe Touch
Wei Yue
University of Southern California/Information Sciences Institute
4676 Admiralty Vay
Marina del Rg, CA 90292

Phone: 310-822-1511
{faber,touch,wyue}@isi.edu

ABSTRACT

Hosts preiding important netwrk services such as HTTP and FTP incur acpanection memory
load from TCP that can adrsely affect their connection rate and throughptihe memory requirement
is directly tied to the number of connections; caching and other sharing methods will viateaite We
have dosened HTTP throughput reductions of as much as 50% under SunOS 4.1.3 due to this loading.

This paper adscates dfloading the memory requirements to thevgrm number of clients.This
reduces seer memory requirements as connection rate at thagrsgraws due to increases in the num-
ber of clients and the bandwidthadable on the neterk. Ourapproaches control sewmemory load
better with graving client load than peransaction techniques such as persistent HTTP connec@ans.
approaches also interoperate with persistent connectionstedtaintage of their other benefits.

This paper describes the causes of the memory loading, Tallg WAI T loading, and defines three
methods of alleiating it that scale with increasing number of clienfde resent measurements of the
systems and a comparison of their properties.

1. Introduction have left the netwrk. Packets leae the netvork by arrve &

The Transmission Control Protocol (TCP)[1] pides reli- ©ne of the endpoints and being rejected, owviagiwith an
able byte-stream transport to hosts on the Interfi€P is expired time-to-lve (TTL) field at a router and being deleted.
used by most netwk services that require reliable transport, For endpoints that are the tgt of mag connections,
including the Hyperte¢ Transport Protocol (HTTP)[2]. thousands of connections may be&liME-WAIT state at an
TCP’s method of isolating old connections fromw®nes time, which introduces significant memoryethead. Vé
results in an accumulation of state asy serers that can refer to this condition al ME- WAI T loading.

reduce their throughput and connection ratése efect on If the endpoint TCP implementation searches all TCBs
HTTP serers is of parncglar interest becauseytarry a \ynen delering paclets, TIME-WAIT loading will directly
large amount of Internet trigd. affect its performanceThe presence of mgrlIME-WAIT

TCP requires that the endpoint that closes a connecti®@Bs can increases the demultipiey time for actre oon-
blocks further connections on the same host/port pair untiections. V& have seen throughput drop by 50% at loaded
there are no paeks from that connection remaining in theendpoints, and the fett on commercial seevs has been
network[2]. UnderHTTR, this host is usually the sem2]. noted elsehere[3]. SomeélrCP implementations address the

To temporarily block connections, one endpoieefs a demgltipledng pro_blem vyithout addressing the memory load;
copy of the TCP control block (TCB) indicating that the conWe discuss them in Section 2.2.
nection has been terminated recenfiuch a connection isin The design of TCP places tidME-WAIT TCB at the
the TIME-WAIT state[1]. Connectionsn TIME-WAIT are endpoint that closes the connection; this decision conflicts
moved to CLOSEDand their TCB discarded after enoughwith the semantics of mgrepplication protocols.The File
time has passed that all patk from the same connectionTransfer Protocol (FTP)[4] and HTTP both interpret the

closing of the transport connection as an end-of-transactitre performance ofusy serers.
marker. In each case, the application protocol requires that
seners close the transport connection, and the transport pro-
tocol requires that seevs incur a memory cost if thedo.
Protocols that use other methods of marking end-of-transac-

Endpoint 1 Endpoint 2
(address a, port p) (address b, port q)

tion, e.g., SUN RPCwar TCP[5], can hee the clients close
connections at thexpense of a more complespplication
protocol.
If the number of clients continues to increase, the omly w
to keep sergr TIME-WAIT memory requirements constant is old
to move the TIME-WAIT TCBs to clients. Aggregaing ° Connection
more requests per connection merely reduces thetlyrof E Closed
the memory load with respect to increasing client load;-mo
ing the load to clients distuites serer memory load to the
cause of that load. IC\Ilg\rllvnection
As networks become dster and support more users, the Established
connection rates atby serers are lilely to increase, result- Duplicate
ing in moreTIME-WAIT loading. Een if paclet demulti- Old Packet

plexing is done diciently, the memory cost of IME-WAIT Accepted!?
loading can become a significant drain on eemesources. Figure 1 The Problem Addressed by thelIME-WAIT State
Seners will need additional pisical memory resources to)

support the load.For embedded seers using TCPthis 2:1- TheFunction of TIME-WAIT

translates directly to a higher cost in dollars andgso The purpose of IME-WAIT is to prevent delayed paaits

Distributing the TCBs across clients scales better than pdfo™m One connection being accepted by a later connection.
transaction load reductions dikersistent HTTP connections Concurrent connections are isolated by other mechanisms,
for controlling TIME-WAIT loading. Thetransaction rate is Primarily by addresses, ports, and sequence numbers[1].
being drven up by the increasing bandwidth and the \giag The TIME-WAIT state @moids the situation depicted in
number of usersReducing each transactisriost only slevs Figure 1. Arrows represent paeks, and endpoints’ time lines
the gravth rate. Offloading TCBs to clients distrilbes the run davn the pagePakets are labelled with the header flags
load more equitably as the number of clientsagraiding the that are releant to connection establishment and shutdo
growth cune instead of throttling it.Because Persistent con-unlabelled paockts carry only data.
nect@ons reduc_e other peonnection costs, such a_betra con- Specifically:
nection establishmentverhead, our systems interoperate

with them. » A connection from (address a, port p) to (address b, port

) o q) is terminated
This work presents three systems to disttéh the :
TIME-WAIT build-up to clients. We siggest wmoiding . Asecond'connect'lon from (address a, port p) to (address
TIME-WAIT loading by ngotiating which endpoint will b, port q) is established
hold theTIME-WAIT TCB during connection establishment. * A duplicate pacét from the first connection is delayed

This pravides the most controlver TIME-WAIT location by in the network and arwes & the second connection

making the placement arxlicit part of connection estab- when its sequence number is in the second connetion’

lishment; havever, performing this ngotiation and respecting window.

it when the connection is closed requires significant chang@such a packt appears, there is nayfor the endpoints in

to TCP the second connection to determine that the delayedepack
In light of this, we also discuss tWess ivasive dternative ~ contains data from the first connection.

solutions: a modification to TCP that shifts tTRME-WAIT This confusion can onlyxést if a second connection from

TCB from serer to client when the connection is closed; anghddress a, port p) to (address b, port q) iv@ethile dupli-
a modification to HTTP that supports the client closing theate packts from the first connection are still in the netiw

connection and holding thieEME-WAIT TCB. TCP aoids this condition by blocking grsecond connection
between these address/port pairs until one can assume that all
2. TheTIME-WAIT State duplicates must ha dsappeared.

This Section discusses thE&ME-WAIT state and its use in
TCP in some detail, and Wwathe TIME-WAIT state impacts

passive close

recv: FIN
send: ACK

active close

Figure 2 The TCP State Machine Br Closing Connections
Connection blocking is implemented by holding aonnection. Br example, FTP clients kwo a file has been
TIME-WAIT TCB at one endpoint and checking incominglelivered successfully if the connection on which the filsw
connection requests to ensure that nev reennection is transferred closes gracefully[4]; this implies that the eerv
established between the bleck addresses and ports.closes connections.

Because only a connection between the same endpoints caficp commentators encourage client/sensystems to

cause the confusion, only one endpoint needs to hold tﬁﬁange for the client to close connections teoich

state. TherCB is held for twice the maximumg®ent life- 1\ ME-WAIT loading[6]. Mary protocols, such as FTRlo

time (MSL). not follow this corvention. We dscuss the reasons for this in
The MSL is defined as the longest period of time that Section 2.3.

paclet can remain undekred in the neterk. Originally the Because application protocols do notetdME-WAIT
TTL field of an IP packt was the amount of time the p&k Tcpg gjstritution into account, hedy loaded serers can
could remain undelered, tut in practice the field has becomey, 56 housands of connections THIME-WAIT that consume
a hop count[7]. Therefore, the MSL is an estimate rather tha'fhemory and can sho active mnnections. INBSD-based
a gJarantge. Thd!nternet host requirements Qiocument SUGTCP implementations, TCBs arept in mhufs, the memory
gests a using 2 minutes as the MSL[& some implementa- 4jiocation unit of the netarking subsystem[9] There are a
tions use wlues as small as 30 seconds[Bhder most con- finite number of mbfs available in the system, and mfs
ditions waiting 2x MSL is suficient to drain duplicates,ub onsumed by TCBs cannot be used for other purposes such as
they can 'and do awe after'that time.j’he chgnce of a dupli- moving data. Some systems on high speed reks can run
cate arning after 2x MSL is greater if MSL is smaller out of mhufs due toTIME-WAIT buildup under high connec-
TCP requires that the endpoint that initiates arvaatose tion load. A SPARCStation 20/71 under SunOS 4.1.3 on a
of the connectionwentually entersTIME-WAIT. Closing a 640 Mb/s Myrinet[10] cannot support more than 60 connec-
connection that is in th&eSTABLISHED state is called tions/sec because of this limit.

actively closing, dosing from CLOSE-WAIT is passively Demultiplexing incoming packts requires searching the

closing. If both ends close the connection frdBSTAB- engpoints list of TCBs which will be full of of IME-WAIT
LISHED, this is a simultaneous close, and both endpoints 8-gs at aTIME-WAIT loaded serer. In a smple imple-

a modified actve dose[1]. (SeeFigure 2.) Intuitively, the mentation, the TCB list is searched linearly to pass thespack

first endpoint to close a connection closes itvalyti and the the appropriate connection, which can be a bottleneck.

second paseely; HTTP and FTP sesrs generally close con- The additional searchverhead can cut throughput in half

nections actiely. between tw SUNOS 4.1.3 SARCStations on a MyrinetWe
Tying the TIME-WAIT state to the closing method simpli-shav an example in Section 5.

fies the TCP state diagram because no information from they;ogern TCP implementationsvaid the werhead of the

connection establishmenfadts connection termination. linear search ofTIME-WAIT TCBs when demultipking
paclets. BSDI/OSkeeps TIME-WAIT TCBs at the end of
2.2. Ferformance Problems at Busy Serers the list of TCBs, so that tliecan be used as a terminator for

Because client/seev protocols are generally synchronizedhe linear search[11].Looking TCBs up in a hash table
request/response protocols, the protocol specification usuakyduces lookup times both for systems with ynan
determines which endpoint will close the transporfIME-WAIT TCBs and for mapactive cmnnections[12].

1 The diagram layout is modelled after one appearing in [6].

Some systems addre3$ME-WAIT loading by using a field or be byte-stdiéd.
shorter MSL, hoping to age tARéME-WAIT TCBs out of the

) _ If a response is generated dynamicgally length may not
system soonerwhich wealens the protection fafrded by

. be knavn when the response starts, making the former fram-
TIME-WAIT. If TIME-WAIT TCBs are kpt a_t clients, the ing methods unwieldy Such data may be generated on
can aford to keep them for the full MSL.Using & shorter gemand from another program in the system that does not
MSL at serers alleiates the memory usage problerat ban egpect the protocol end-of-file mark An HTTP serer that
_affect the intgrity _of communications Wlth _eymos_t to which supports the Common Gatay Interface (CGl) is such a sys-

it connects.The size of the MSL to maintain avgh memory ey Bufering that prograns autput to determine its size or

usage leel is inversely proportional to the connection rattyema/e enbedded end-of-transaction merk slovs the
This implies that connections will be least protected at ﬂ}%sponse.

most loaded seers.

Even in TCP implementations that demultiplpackets 3. TIME-WAIT Negotiation
efficiently, such_ as those mentioned akp TIME-WAIT This section discusses modifying TCP togokiate the
TCB accumulation consumes memofgystems such as per Me-wWAIT TCB holder when the connection is established.
sistent HTTP connections can reduce the-t@rsaction This males the post-connection memory requirememplieit

serer memory cost, Ut the Internet continues to g¥doth 504 aligys either endpoint to decline the connection if the

in terms of mailable bandwidth and in terms of number Ofgyegrhead is unacceptableFurthermore it is transparent to

users. Theesult is that bsy serers will be seeing more con- 4npjications using the transport, and aficthem to close the
nections per unit time, which translates directly into '”Creas?%nsport connection as part of their protocol without incur
memory usage. ring hidden costs.

Spreading the memory requirement to theagmg number We mropose adding a TCP option, TMégotiate, that indi-
of clients scales better than reducing thetp@rsaction cost ates which end of the connection will hold the TCBYV-
at the sergr when the number of transactions is stilivgrm. Negotiate will be ngotiated during the threeay handshak
Pertransaction systems try to reduce the cost of each clieffat is used to synchronize TCP sequence numbEhne

but the requirements still gro with increasing Internet traf- three-vay handshak has been used to getiate other
fic. Distributing the TIME-WAIT TCBs to clients taés options, such as TCP wincscaling[14].

adwantage of their gming number to reduce the memory
load on sergrs. Oursystems support persistent connections
in order to share their other benefits, suchvaidmg extra 1. Clientincludes the T\WNegotiate option in th&SYN>

The ngotiation algorithm for a client/segv connection:

TCP 3-vay handshads. paclet for the connectionTW-Negotiate contains the
IP address of the end that will hold the TCBhe
2.3. Sever Close and Aplication Semantics option’s presence indicates that the client supports

negotiation. Clientsmust send an IP address, to sup-

Using connection close to delimit transactions is a clean : : :
port the algorithm bels for resolving a simultaneous

abstraction with unintended performance impact under. TCP

HTTP and FTP seers signal the end of a transaction by open.

closing the transport connectios we agued abwe, this 2. Serer returns the<SYN, ACK> paclet with TW
can TIME-WAIT load serers[2,4]. Theseprotocols carry Negotiate set to its choice toe&p theTIME-WAIT
the majority of the TCP trif in the wide area Internet today state. Ifit does not support getiation, it sends no

Using the TCP connection closure as part of a simple TW-Negotiate option.

request/response protocol results in simpler protoctts. 3. Theclient decides if the seev's choice is acceptable.

such as system, the semantics of BCB0se mak it an If so, it acknevledges the<SYN, ACK> paclet with
unambiguous end-of-transaction merkWithout this mech- the same alue of TWNegotiate. Ifnot it aborts the
anism, protocols are forced to specify transaction length connection with asxRST>paclet. (Theconnection is
explicitly, or to provide an unambiguous end-of-transaction aborted as though iafled to synchronize, and intro-
marker. duces no ne failure modes to TCP Aborting the

connection from this unsynchronized conditionvisa
no etra state at either endpoint; the sgrveturns to
LISTEN, and the client closes the connectiolfi.the
sener returned no TWNegotiate option, the connec-
tion will use current TCP semantics: the side that
issues the aate dose will entefTIME-WAIT (or both

2This is flse in protocols that can Ve multiple pending will if they close simultaneously).
requests, e.g., pipelined HTTP requests[13].

Providing an unambiguous end-of-transaction nearin
the data stream requires that the sewither knas the con-
tent length when the responsegioes, or edits the outgoing
data stream to mask end-of-transaction merkn the data
that the client must restordransactions must ke a ength

This algorithm handles gnnon-simultaneous connection exchange<FIN> paclets as usual, and thEIME-WAIT
establishment; the follwing handles the simultaneous caseholder will enterTIME-WAIT and the other endpoint will
During a simultaneous open, neither endpoint is in theesenenter CLOSED regadless of which end closed aally and
role, so neither has the TWegotiate \alue has priority As which (if either) passely.
establishment progresses, both sides will find theraselv When neotiation is added to a endpomiperating sys-
SYN-RCVD (the state transitions ar€€LOSED-SYN- om most applications will use system-wideadits for the
SENT- SYN-RCVD Each will knav two TW-Negotiate al- 1\ Negotiate option. These dedults will be set to minimize
ues: theirs and the other endpaifit]. Fromhere, each end- goper load, i.e, to holdTIME-WAIT TCBs at clients. A

point behaes s if it were a client in step 3 of thegwiation mechanism, such as a setkption, will be preided to allov
and had receed the \alue in Bble 1 from its peerAt most applications to verride the dedult setting.

one endpoint will disagree with the conclusion, and send an . .
<RST> The ngotiation algorithm alles kusy serers to accept

connections only from clients that are willing to incur the

'I_'his a_lgorithm guarantees that the endpoints _WiII agree GiME-WAIT overhead. Applicatioralgorithms do not he
which will_enter TIME-WAIT when the connection is dis- {5 gjter their use of connection close in their protocol, and

solved, or will fall back to TCP semantics if either side doeg,cur no hidden performance penalty associated with the dis-

not support ngotiation. tribution of TIME-WAIT TCBs.
TW-Negotiation TW-Negotiation
Values Known Value To Use 3.1. Barriersto Adoption
Either Contains No Option No Option

The Same IP Address That IP Address AIthough_the_ _algorithm ahe is dmple to describe, it rep-

Two Different IP addresses Larger IP Address resents a significant change to the TCP state macMaey

TCP implementations are descended from the original BSD

reference implementation of the TCP/IP stack that directly
As an eample of a ngotiation when tw endpoints simul- implements the TCP state machine[9]mplementing

taneously open the same connection, consideretdpoints, changes to that state machineuld require significant pro-

A and B. As IP address is lget Both alvays attempt to gramming and testing feft. Furthermore proofs of TCP

negotiate holding their wn TIME-WAIT TCB, i.e., thg correctness that rely on the TCP state machioeldvbe
send their wn address in the TWegotiate option.The two jnvalidated.

endpoints attempt to open the connection,<48& N>s aoss
in the netvork and both recee a<SYN>before thg have
receved a<SYN, ACK>. The endpoints kne the \alue of
both TWNegotiate options, it neither is in the seev role
abore and can mak the “final ofer”. they both act as if the
had were clients and had sent&YN>with their preferred
value, and receed a<SYN, ACK> with A's address. The
use As address based orable 1.

Table 1: Negotiation \alues br Simultaneous Open

The state machine changes reflect #ut that information
from connection establishmenfexts the closureCurrently
once an endpoint has finished the threg~wandshak and
entered th&STABLISHEDstate, it is impossible to tell what
role it played in creating the connectioBy using informa-
tion from the connection establishment to determine the end-
points’ behaior when the connection is terminated, weéda
created tw dates that represent an established connection,

If having A hold the TIME-WAIT TCB is acceptable to and which state a connection enters depends on the result of
both, thg will both send arxSYN, ACK> with A's address an option ngotiation.
in the headerand the connection will be established (after the Negotiating theTIME-WAIT TCB holder when the con-

1'Ell'ncal_l; <¢C!Tl>excgar;geR)é1!f>|3 ISdutwr;/wllmg o T_a/e A.”h)Id tge nection is closed disrupts the state machine legseduces a
L Will send a and the connection will wer be endpoints’ control wer their resourcesA client in a system

established. Awil alyvays send a<§YN, A_‘CK> because that ngotiates the holder before the connection is established
Teble 1 ha; selected its prefgrence, this willagfs be true of cannot get the data itamts without reaching an agreement
one endpoint, so only one will send #RST> with the serer about which side bears the costs of the
This system is biased vard endpoints with layer 1P TIME-WAIT TCB; a client in a system that gatiates the
addresses; heever, Smultaneous attempts to establish conholder when the connection closes cawagb leae the
nections are rare and vee occur in client/serer systems. sener paying theTIME-WAIT cost. W prefer a system that
Should systemsvelve that ehibit frequent simultaneous makes agreement on the allocation of connection costs a pre-
connection establishment attempts aMIE-WAIT loading, requisite to incurring themHowever, because allocating the
the protocol can be modified to include a random number MME-WAIT state at connection close time is simplee
each header and use that to pick the TCB holder have implemented anxample of that system, which we dis-

When the a connection connection that has gotieted CUSS in Section 5.1.
TIME-WAIT holder is closed, the tw endpoints will

We feel that the benefits of prding applications more connection inTIME-WAIT state. Suclstacks are susceptible
control over the endpoint resources thatylemmmit to a con- to TIME-WAIT assassination[15], which can lead to connec-
nection has significant adrtages. Theroposed system iso- tions becoming desynchronized or degéah TIME-WAIT
lates that protocol belmr, which males the solution more assassination is the accidental or malicious deletion of a
general than, forxample, rgersing the roles of aate and TIME-WAIT TCB at an endpoint, which can lead to confu-
passive doser Finally it isolates application programs fromsion as shen in Figure 1.

an implementation detail of the transport protocol,vélg Our system assassinat®BME-WAIT states at the sesv
new application protocols to meet the needs of applicationg,q replaces them at the client, which does not changesTCP’
rather than being bent out of shape by transport. behaior. Adding our system to a semvthat is susceptible to

)) TIME-WAIT assassination does not reagkmore vulnerable,
4. Other Systems to Aoid TIME-WAIT TCB Loading but a ener that implements the changes in[15] tovpne

In this section we propose dwless ambitious solutions to assassinations will not benefit the system described in this
the serer TIME-WAIT loading problem.Each solution is a section. Interactionsbetween a seer that preents
small change to an xisting protocol that reduces TIME-WAIT assassination and a client that implement our
TIME-WAIT loading in HTTP and FTP sexks. Onesystem changes do not compromi$&ME-WAIT guarantees.
modifies TCP to xchangeTIME-WAIT TCBs after a suc- oyr system modifies the TCP state machine by changing
cessful close, the other modifies HTTP to encourage clientsit arc fromLAST-ACK to CLOSEDto an arc fromLAST-
close the underlying TCP connectioliVe diose to modify aAckto TIME-WAIT and sending aRRST>when the arc is
HTTP because itis a lg& component of Internet tfif traversed. (SedFigure 2 for the relent section of the TCP

These solutions are intended to be practical oAsssuch, state diagram.)lo reduceTIME-WAIT loading from FTP or
they are incrementally depi@mble and compatible withxst- HTTP, these modifications need to be made only to clients.
ing protocol specificationsBoth the TCP and HTTP solu- pqgts that act primarily as clients may be configured with
tions realize benefits without modifying the samsystems, ihe nev behavior for all connections: clients that serzs
although additional benefits accrue if both client andeservyyqiyy client and seer such as HTTP proxies, may be config-
implement the HTTP changed\either set of changes vio- ;a4 to support both the weand old behaiors. Supporting
lates the current TCP or HTTP specifications, so changed sygih svapping and non-sapping close is straightfoard
tems will operate in todagInternet. although it requires a moretensive modification of the TCP

We have implemented both systems, and obednthat state machine.
both significantly reduce thEIME-WAIT loading on HT_TP To dlow both behaiors on the same host we split the
serers. V& dscuss the performance of both systems in SegagT-ACK state into tw dates, one that represents the-cur
tion 5. Pdaches which implement the systems available ont pehsior (LAST-ACK) and one which represents the

from the authors. modified behaior (LAST-ACK-SWAB.2 If the client irvokes
_ close while inCLOSE-WAIT, current TCP semantics apply;
4.1. Transport Level (TCP) Solution if the client irvokes dose svap in the same state, the

The TCP solution »xhanges theTIME-WAIT state <RST>sending behaor applies. Close and close_sp are
between the seev and client when the connection is closedndistinguishable if imoked from ESTABLISHED
We nodify the c_IientS TC_ZP implementation so that after a The state machine in Figure 3 implements both dera
successful pass dose, it sends amRST> paclet o the compare it with the earlier Figure 2, which aisothe state
sener and puts itself into AIME-WAIT state. ThesRST> achine for TCR connection closing bekir. The details

paclet remoes the TCB in TIME-WAIT state from the f active and simultaneous closing are unchanged from Fig-
sener; the eplicit transition to aTIME-WAIT state in the ;16 2 and are omitted for clarity

client presergs correct TCP betair. . . .
Adding close_swap does not require adding a system call.

If the client<RST>is lost, both semr and client remain in 50 implementation of close_ap adds a pezonnection
TIME-WAIT state, which is equélent to a simultaneous fjaq that changes the defit behaior when set.When a con-
close. Ifeither endpoint reboots during thBST>exchange, nection with the flag set is closed, the close system call calls
the behwior is the same as if an endpoint running unmodifiegiose svap instead.Endpoints that are primarily clients set

TCP fils with connections INMIME-WAIT state: packts iheir defult close behdor to be close_sap, endpoints that
will not be erroneously accepted if the endpoint veoand 4,0 primarily serers will defwilt to close.

refuses connections until ax2MSL period has elapsed[1,8].
The behwior of an actve dose is undected.

3 These states may both be reported AST-ACK to moni-

Using an<RST>paclet means that this system onlpnks toring tools for backard compatibility

with TCP stacks that accepRST> paclets that arxie for a

passive close

recv: FIN
send: ACK

send: <mothing>

2MSL timeout
or RST

TIME_WAIT CLOSED

active close

Figure 3 M odified TCP State machinedr swapping TIME-WAIT states
The performance of this system is limited bywheffi- POST that is not gplicitly defined in the HTTP specifica-
ciently the endpoint processeRRST> paclets. Endpoints tion[2] A CLIENT_CLOSErequest requires no replyt ter
that incur a highwerhead to handlinggRST>s, or delay pro- minates a series of requests on a persistent connection, and
cessing them are not good candidates for this approach. indicates to the seev that the client has closed the TCP con-
This system also changes the meaning of <RST> nection. Aclient will close the TCP connection immediately

paclet. An <RST> paclet currently indicates an unusual@ftér sending th€LIENT_CLOSErequest to the seev
condition or error in the connection; this system proposesA CLIENT_CLOSErequest diers from including a&on-
making it part of standard connection closing procedure. nection: close in the header of a request because a

The TCP solution described in Section 3 does ndesuf "'€duest that includeSonnection: close _ still requires
from the dravbacks associated with usingRST> paclets, @ eply from the serr, and the serer will (actiely) close the
either in terms of \posing systems to incorrect TCP semanconnection[2]. ACLIENT_CLOSErequest indicates that the
tics or in terms of additional processing time fRST> client has s«gred the TCP connection, and that the eerv
should close its end without replying.

paclets.
CLIENT_CLOSEis a minor &tension to the HTTP proto-
4.2. Application Level Solution for HTTP col. CurrentHTTP clients conduct an HTTP transaction by
The systems in Section 3 and Section 4.1 botohie opening the TCP connection, making a series of requests with
changes to the transport protocol which is used byymaf@t Connection: close line in the final request header

applications. Directlynodifying an application protocol that @nd collecting the responseghe serer closes the connec-
is loading serers may control the loading problem and minifion after sending the final byte of the final requésadified
mize the dct on other applications. clients open a connection to the sgrvmake a ®ries of

ts, collect the responses, and seGHIENT CLOSE
This section describes modifications to HTTP thawilte reques P -

h i fth LT IME-WAIT loadi request to the seev after the end of the last respon3de
the contrilition of that protoco T o oading. V€ glient closes the connection immediately after sending the
chose to modify HTTP because it is a major source @ cnT CLOSE

client/serer Internet tréfc. B i)) -
| : f HTTP relied he closi f the TCP Modified clients are compatible with the HTTP 1.1 specifi-
Early \ersions o relied on the closing of the TC cation[2]. A sener that does not understand

connection to indicate the end of a transactiémong the CLIENT CLOSEwill see a comentional HTTP @&change
qhanges 'ShHTTP 1h.1[zalvg t?e support of perls_lsltent Connef‘c‘ﬂlowed_by a request that it does not implement, and a closed
tions, a te(;] nique tTatP clients :2 pa;s multiple ransac-¢qnnection when it tries to send the required error response.
tions over the same CP connectiom or €1 10 SUPPOIt Per A conformant serer must be able to handle the client closing
sistent connections, the end-of-connection and end-of-traqﬁé TCP connection at wrpoint. Theclient has gotten its

action indications hae been decoupled.This decoupling data, closed the connection and holdsTHaE-WAIT TCB.
allows us to modify HTTP to alle clients to actrely close])
connections and therefore hold fAME-WAIT state. We intend to &tend CLIENT_CLOSEto include a mecha-

nism for the sermr to request that the client close the connec-
tion. This is analogous to the currer€onnection:

close butis initiated by the semr and implemented by the
client. UnderHTTP 1.1, loaded seevs are allwved to close

We nodify HTTP 1.1 to include a notification from the
client that the connection is close@his notification taks
the form of an xtension request, calle@GLIENT_CLOSE
An extension request is aweHTTP command, ligk PUT or

persistent connections to reduce their load they will incur illustrates that both our TCP and HTTP solutions inapro
a TIME-WAIT TCB by doing so. Allowing serers to sener performance under theehSTONE benchmark, which
request that the client disconnect shedsTiME-WAIT load simulates typical HTTP tr&€. The last experiment shas

at the serer as well. that our modifications enable a servo support HTTP loads

Modifying seners to recognizeCLIENT_CLOSE can that it cannot in their datilt configurations.
malke parts of their implementation easidviogul et al. note _ _
that discriminating between a persistent connection that Jst- Demonstrationof Worst-Case Sever L oading
temporarily idle and one that is closed can bécdit for The first &periment vas designed to determine if TCB
seners because mgroperating systems do not notify theload reduces seev throughput and if our modifications alle-
sener that the client has closed the connection until thgate that dkect. Thisexperiment used four Sparc 20/31’
sener tries to read from it[2]CLIENT_CLOSEmarks clos- connected by a Myrinet using a uéerel data transfer pro-
ing connections, which simplifies the sencode that detects gram aver TCP. The throughput is thevarage of each of ta
and closes connections that clientséhdosed. client workstations doing a simultaneouslibtransfer to the
Having a client decide when to initiateGLIENT _CLOSE Séner. We varied the number oTIME-WAIT TCBs at the

is somevhat comple. It has to consider user lwsing pat- S€ner by addingrIME-WAIT states.

terns, state of local resources, and the state oferserv The procedure as:

resources. Théast may be the frickiest to incorporatés 1. Two dient machines establish connections to the
mentioned abee, servers may choose to terminate persistent sener

connections in order to reuse the resources allocated to that
connection. Selrs need a mechanism to communicate their
commitment lgel to a onnection, so that clients and seny

are more likely to decide to terminate the same ones[16].

The CLIENT_CLOSE request has been implemented
directly in the apache-1.2.4 ser{17] and test programs from
the WebSTONE performance suite[18Paches are\ailable
from the authors.

Adopting the HTTP solution is fefctive if HTTP connec- 4 B h dled i all
tions are the a major source BIME-WAIT loading; hav- : Tli/lt\gesl\r/]Arll':'nﬁ(’:Bt e ng vas idled untl a
eve, if another protocol hgins loading semrs with - s timed out.

TIME-WAIT states, that protocol will va o be nodified as ~ The results are plotted in Figure Each point is thever-
well. Currently we lkelieve HTTP causes the utk of age of ten runs, error bars are standardiatiens. The
TIME-WAIT loading. “Modified TCP” cune represents a SunOS system with the

The CLIENT_CLOSEsystem requires changes only on thd CP modifications from Section 4.1Unmodified TCP" rep-
client side _although making sers avare of resents an unmodified SunOS systeMl. other parameters
CLIENT_CLOSE may enhance the systeam#fectiveness. remained unchanged.

The system conforms to the HTTP 1.1 specification and The eperimental procedure is designed to isolatecastv
requires no changes to other protocdts.our knavledge, it case at the seev The client connections are established first

Thesener is loaded witliTIME-WAIT TCBs state by
a fourth workstation. Thisvorkstation established and
shut devn connections asa$t as possible until the
sener was loaded.

The two hulk transport connections transfer data.
(Throughput timing bgins when the data transfer
beggins, not when the connection is established.
TIME-WAIT TCBs may &pire during the transfgr

creates no ve security vulnerabilities. to put them at the end of the list of TCBs in the sekernel,
which will maximize the time needed to find them using
5. Experiments SunOSs linear searchTwo clients are used to neutralize the

In this section we presenkmeriments that demonstrateSimIOIe caching belveor in the SunOS drnel, which consists

TIME-WAIT loading and shw that our solutions reduce its of keeping a _single_ pointer to the most recently accessed
effects. The proposed solutions ka teen implemented TCB. Two dstinct clients are used to alofor bursts from

under SunOS 4.1.3 and initialatuations of their perfor the two dients to interlewe; two dient programs on the same

mance hee keen made using both custom benchmark prg_ndpoint _send ursts in lock-step, which reduces the cost of
grams and the WhSTONE benchmark[18].The tests were the TCB list scans.

run on vorkstations connected to the 640 Mb/sec Myrinet The &periment shais that under wrst case conditions,
LAN. TCB load can reduce throughput by as much as 50%, and that

We performed two experiments. The first xperiment
shavs that TCB load dgades seer performance and that
our modifications reduce that gladation. Thesecond

Throughput Conn. TCB
80 — System Type per Memory
(Mbfsec) second (Kbytes)
S 60 @\—f%f\f—}—{ Unmodified 20.97 49.09 722.7
2] N Modified TCP TCP Mods. 26.40 62.02 23.1
= @ - HTTP Mods. 31.73 74.70 23.4
é- 40— gfg' T~ & Table 2: TIME-WAIT Loading Under WebSTONE
(o)) g =< o . . .ge .
3 Unmodified TCP %} P When clients request smaller files, unmodified systexhs f
= 20— completely because theun out of memory; systems using
our modifications can support much higher connection rates
0 than unmodified systemdable 3 reports data from a typical
| | | | | | WebSTONE run using 8 clients on 4arkstations connectin
g g
0 500 1000 1500 2000 2500 : :)
to a dedicated seev All clients request only 500 byte files.
Connections in TIME-WAIT Throughput conn. Tce
System Type per Memory
(Mbfsec) second (Kbytes)
Figure 4 Worst-Case Sever L oading Y
o . Unmodified fails fails fails
our TCP modifications impwe performance under those Tcp Mods. 1.14 2238 16.1
conditions. HTTP Mods. 1.14 222.4 16.1

While it is useful that our modifications perform well in the Table 3: TIME-WAIT Loading Under WebSTONE With Small Files
worst case, it is important to asses thartiv of the modifica-

tions under epected conditions.The preious e&periment g ytions reduce the memory load on sesv Theworst-case
constructed a wrst case scenario; the folling experiment o, ariment shass that the system with a modified TCP-per
uses VEbSTONE to test our modifications under more typicalyrms much better in the arst case, and that servband-
HTTP load. width loss can be considerabl@he WebSTONE eperi-
i ments shas that both systems reduce memory usage, and
5.2. HTTP Load Experiments that this leads to performanceigs. Finallymodified sys-
WebSTONE is a standard benchmark used to measure widms are able to handleovkloads that unmodified systems
sener performance in terms of connection rate and per cocannot.
nection throughput.To measure seer performance, seral This is a challenging test @ronment because the TCB
workstations ma& HTTP requests of a s@wvand monitor the |5aq of the semr workstations is spread across onlyotw
response time and throughpu.central process collects and gjients rather than the hundreds thauvd share the load in a
combines the information from the inttiual web clients. W o5 system.The clients sdér some performance geada-

modified the benchmark to measure the amount of memapyn due to the accumulating TCBs, much as theesadues
consumed by TCBs on the servmachine.We wsed Vb- i, the unmodified system. ’

STONE \ersion 2 for thesexperiments. Thesame worksta-

tionst and neterk from Section 5.1 are used in these&i- 5 3 T|\ME-WAIT Avoidance and Rersistent Connections
ments.

The eperiments support theypothesis that the proposed

i The systems proposed are compatible with thecpenec-

WebSTONE models a heg load that simulates HTTP 4, schemes such as persistent connectidiosshow that
traffic. Two workstations run multiple web clients which g, systems impre@ the memory performance of those sys-
continuously request fil_es ranging from 9_KB to 5MB f_romtems, we ran \8bSTONE experiments using persistent con-
the serer. Each vorkstation runs 20 web clientICP modi- neciions and our systemShe experiment used the same net-
fications are as described in Section 4.1 and HTTP modifiGgak as the gperiments described in Section 5.2ptwork-
tions are as described in Section 4Results are sln in giations acted as clients, and one as a welrseEach client
Table 2. used the same request pattern as the resultgbie 2. Each

Both modifications she marked impraovements in client issued 5 HTTP requestsaied until thg al arrived,
throughput, connection rate and memory UBEP modifica- and sent 5 moreEach connection seed 10 requests in tw
tions increase connection rate by 25% and HTTP modificB-request brsts.
tions increase connection rate by 50%ener memory
requirements are reducedgeaalless of the HTTP/TCP
demultipliing implementation.

Figure 5 shws hav per-connection gerage client through-
put varies with increasing number of client€onnection
throughputs are comparable to those abl& 2, with the dif-
ference due primarily to the longer life of these connections.
For example, congestion wines will open arther Our

TIME-WAIT avddance methods increase the-pennection

throughput as client load increases.

-10-

role in closing the connection is independent of its role in
establishing the connection.

We have proposed ngotiating which endpoint holds the

30—
B e e . . e TIME-WAIT state during connection establishment, and pro-
A B - i B g _o-8B___=8 posed a rgotiation protocol.This system x@ends TCP func-
2 0 A p oA A A tionality to allocateTIME-WAIT TCBs to the proper end of
B o the connection without interfering with the semantics of the
D . . . el .
€3 application protocols or leang knovn vulnerabilities in
8 ;;:? 15
o 9 10—{ < TCP Modification 5]
o c O HTTP Modification I=
= A Unmodified 5 M
9/ 5]-5-5 - = = S|
A
0 2 10 A A oA DA
| | | | &
20 40 60 80 S
Total Clients 0 o
g 5—{ «TCP Modification
Figure 5 Throughput vs. Clients (Rrsistent Connections) 8 2 Bl—;z(m%%flcatlon
. . _ . . o
Figure 6 shws that in addition to a modest increase in per g
connection throughput, our systemsyide significant reduc- ? 0 | | | |
tion in the memory used for TCB blocks at s#s/ Thaffig- 20 0 60 80

ure plots the number of TCBs in use by the sexersus the

client load.

Total Clients

It appears from Figure 6 that a simple persistent connection Figure 7: Connection Rate vs. Clients (Brsistent Connections)
system is shwing improved memory performance with TCR Howeve, because our proposalvinlves significant

increasing client load,ut this is not the casdrigure 7 shws

changes to the TCP stack wepect some resistance to its

that the connection rate decreases with increasing client lcadbption.

in the unmodified system, due to the additionedrioead.

We havealso implemented and tested a simpler TCP solu-

The memory usage folles the connection rate in the unmod+jgy and an HTTP solution to shoshift the TIME-=WAIT

ified system.Because Figure 6 includes &etiTCBs as well

load from client to semer. We have presented xperimental

asTIME-WAIT TCBs, our systems shoa linear increase in q\igence thafTIME-WAIT loading can déct serer perfor

used TCBs.

mance under SunOS 4.1.8Inder these conditions, through-
put can be reduced by as much as 50%.

00— a4 2 Using WebSTONE, we hae shown that HTTP clients and

> Au D jitied seners using one of our systemsghéit higher throughputs

5 nmodifie A A A . .

£~ /5] under SunOS 4.1.3Clients and seers using our system can

2 £ support higher connection rates than unmodified systems, in

82 50 certain configurations.

|_

g § TCP and HTTP Modificatio We haveshawn that our systems combined with persistent

@ 25| M HTTP connections use less memory than an otherwise

n
unmodified SunOS 4.1.3 system using persistent connections
for a given dient load. Our systems interoperate with persis-

0 \ \ \ \ tent connections.
20 40 60 80
Although there are other systems that address the through-
Total Clients

Figure 6 M emory Use vs. Clients (Brsistent Connections)

6. Conclusions

put problems we discuss here[11,12], our systems attack the
memory loading problem directlyThis can reduce the cost

of deplg/ing a serer, which can be especially important to an
embedded or battery wered serer.

We havedescribed he TCP interacts with certain applica- 180e 4 compares the three systems proposed here.

tion protocols to load seevs with TIME-WAIT TCBs, and
shavn examples of this belér. This interaction is a direct
result of the the simplifying assumption that an endp®int’

-11-

TCP With TCP With CLIENT_CLOSE

TIME-WAIT Client HTTP

Negotiation <RST> Extension
Reduces TIME-WAIT Loading Yes Yes Yes
Compatible With Current Protocols Yes Yes Yes
Changes Are Effective If Only The Client Is Modified No Yes Yes
Allows System To Prevent TIME-WAIT Assassination Yes No Yes
No Changes To Transport Protocol No No Yes
No Changes To Application Protocols Yes Yes No
Adds No Packet Exchanges To Modified Protocol Yes No No
TIME-WAIT Allocation Is A Requirement of Connection Yes No No

Establishment

Table 4: Summary of Poposed Systems

We telieve that TCP shouldwentually be modified to sup- (14-18 September 1997).
port TIME-WAIT negotiation. Thecoming upgrade from IP 14. \an Jacobson, Robert Braden, and D. Borman, “TCP Extensions for
version 4 to ersion 6 represents an opportunity toigi High Performancé,RFC-1323 (May 1992).
TCP implementation and design as wellhis would be an 15. R.Braden, “TIME-WAIT Assassination Hazards in TCRRFC-1337,
opportune time to includ€IME-WAIT state ngotiation. USCl/Information Sciences Institute (May 1992).

We havealso proposed tveffective, practical systems for 16 Jamesettys,Personal Communication (December 1997).

reducing TW load at seevs until the more ambitious pro- 17. Ry T. Felding and Gail Kaiser‘Collaboratve Work: The Apache
posal can be implementeddopting one of them auld also Sener Project, IEEE Internet Computing, vol. 1, no. 4, pp. 88-90,

. IEEE (July/August 1997).
reduceTIME-WAIT loading at serers. _ o
18. GeneTrent and Mark Sak “WebSTONE: The First Generation in

HTTP Serer Benchmarking, white paper, Silicon Graphics Interna-

References tional (February 1995).
1. Jon Postel, ed., “Tansmission Control Protocbl,RFC-793/STD-7
(September1981).

2. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and Berners-Lee,
“Hypertext Transport Protocol - HTTP/171,RFC-2068 (January
1997).

3. RobertG. Moslowitz, “Why in the World Is the Véb So Slw,” Net-
work Computing, pp. 22-24 (March 15, 1996).

4. J. Postel and J. K. Reolds, “File Tansfer Protocdl, RFC-959,
USCl/Information Sciences Institute (OctohEI85).

5. Sun Microsystems, Inc., “Remote Procedure Call Specificdtion,
RFC-1057 (June 1, 1988).

6. W Richard Stgens, TCP/IP lllustrated, Volume 1, The Protocols,
Addison-W\éslg, Reading, MA, et al. (1994).

JonPostel, ed., “Internet ProtocoRFC-791/STD-5 (September 1981).

InternetEngineering @sk force, R. Braden, ed., “Requirements for
Internet Hosts — Communications Lay&iRFC-1122 (October 1989).

9. GaryR. Wright and WRichard Steens, TCP/IP lllustrated, Volume 2
The Implementation, Addison-Wesley, Reading, MA, et al. (1995).

10. Myricom,Inc., Nannette J. Boden, Dgan@ohen, Robert E. Felderman,
Alan E Kulawik, Charles L. Seitz, Jak N. Selovic, and Wn-King Su,
“Myrinet: A Gigabit-persecond Local Area Netwk,” |EEE Micro, pp.
29-36, IEEE (February 1995).

11. Mike Karels and De&d Borman,Personal Communication (July 1997).

12. Raul E. Mckenng and Ken F Dove, “Efficient Demultipleing of
Incoming TCP Bclets] Proceedings of SGCOMM 1992, vol. 22, no.
4, pp. 269-279, Baltimore, MD (August 17-20, 1992).

13. Hendrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric
Prud’hommeaux, Han Wum Lie, and Chris Lillg, “Network Perfor
mance Bects of HTTP/1.1, CSS1, and PN®roceedings of the S G-
COMM Symposium on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pp. 155-166, Cannes, France

